
 VVoolluummee--88,, NNuummbbeerr--22 JJaann--JJuunn

GGaarrbbaaggee CC

Shubhnandan S Jamwal
Department of Computer Science &

Abstract: Garbage Collection (GC) is the process of automatic memory reclamation in which those objects
which are no longer referenced by program or any other live object are collected. The memory occupied by
these objects is freed and added to the pool of free memo
GC is known as Garbage Collector.
Time taken by minor collection is one of them.
the four garbage collectors on various benchmarks of SPECjvm2008 and calculated how much
required to perform minor collection.
Keywords: Benchmark, garbage collector, minor collection, pauses.

 Introduction
Automatic memory management is gaining importance in the high level languages. Many high level
languages like Java, C# have incorporated
four garbage collectors in Java. These are Serial, Parall
garbage collectors. A heap in java is divided into three regions.
generation and permanent generation. Initially objects are allocated to young generation. While those
objects that survive two or more minor collections are promoted to old generation. Some large objects may
also be allocated directly in the old generation. Permanent generation is a non
contains data of the virtual machine itself, such as c
Young generation : The young generation is further divided into three regions: one
spaces from space and to space. Initially objects are allocated to
space). One of the survivor space (
be accommodated in the young generation are allocated to the old generation.

When garbage collector is running to collect the garbage (dead
application is stopped. Garbage collection time is
garbage collection the application is stopped and the garbage collector is running.
collection application is paused to collect minor collection. While during old generation collection
application is paused to collect major collection.

Review of Literature
 Sunil Soman and Chandra Krintz [1
is highly dependent upon the application behavior and on underlying resource
range of diverse garbage collection
sizes. They further presented a Java Virtual Machine extension
between diverse, widely used GC for application specific garbage collection selection. Further
described a novel extension to extant on
specialization that is readily amenable to compiler optimization.
Petrank [2] presented a modification of the concurrent collector, by improving the
application, stack, and the behavior of cache
as short pauses and high scalability). They implemented their
obtained a performance improvement of up to 26.7%, a reduction in the h
and no substantial change in the pause times
production JVM. Stephen M Blackburn, Perry
overall performance of generational collectors as
dictated by collector time. Mark Sweep does better in small heaps and Semi
But the results are not satisfactory
time which needs to be better balanced for achieving
Attanasio, David F. Bacon, Anthony Cocchi, and
sufficient, all the collectors behave in similar manner. But when memory is
(using mark-sweep for the mature

 22001155 pppp.. 222255--222288 IImmppaacctt FFaaccttoorr 22..88 available online at

DOI: 10.141079/IJITKM.2015.813

CCoolllleeccttiioonn TTiimmee ffoorr MMiinnoorr
CCoolllleeccttiioonn

Shubhnandan S Jamwal, Nitan Singh
Department of Computer Science & IT, University of Jammu, Jammu, India

Jamwalsnj@gmail.com

Garbage Collection (GC) is the process of automatic memory reclamation in which those objects
which are no longer referenced by program or any other live object are collected. The memory occupied by
these objects is freed and added to the pool of free memory. The programming thread that is responsible for
GC is known as Garbage Collector. There are various metrics that affect the performance of the
Time taken by minor collection is one of them. In the current research paper we have experimental
the four garbage collectors on various benchmarks of SPECjvm2008 and calculated how much
required to perform minor collection.

Benchmark, garbage collector, minor collection, pauses.

Automatic memory management is gaining importance in the high level languages. Many high level
languages like Java, C# have incorporated garbage collectors for automatic memory management
four garbage collectors in Java. These are Serial, Parallel, Parallel Old, and Concurrent Mark Sweep

A heap in java is divided into three regions. The regions are young generation, old
generation and permanent generation. Initially objects are allocated to young generation. While those

s that survive two or more minor collections are promoted to old generation. Some large objects may
also be allocated directly in the old generation. Permanent generation is a non-heap memory area that
contains data of the virtual machine itself, such as classes, java methods and reference objects.

The young generation is further divided into three regions: one eden and two
. Initially objects are allocated to eden and one of the survivor space (

survivor space (to) is empty all the time. Those objects that are large in size and cannot
be accommodated in the young generation are allocated to the old generation.

When garbage collector is running to collect the garbage (dead objects) in the young generation, the
Garbage collection time is defined as the time spent in collecting the garbage. During

garbage collection the application is stopped and the garbage collector is running. During young generation
collection application is paused to collect minor collection. While during old generation collection
application is paused to collect major collection.

unil Soman and Chandra Krintz [1] showed that application performance in garbage collecting languages
upon the application behavior and on underlying resource availability. Given a wide

range of diverse garbage collection algorithms, no single system performs best across all programs and
ther presented a Java Virtual Machine extension for dynamic and automatic switching

GC for application specific garbage collection selection. Further
described a novel extension to extant on-stack replacement (OSR) mechanisms for aggressive GC

amenable to compiler optimization. Katherine Barabash, Yoav Ossia, and Erez
a modification of the concurrent collector, by improving the throughput of the

e behavior of cache of the collector without foiling the other good qualities (such
as short pauses and high scalability). They implemented their solution on the IBM production JVM and

improvement of up to 26.7%, a reduction in the heap consumption
and no substantial change in the pause times (short). The proposed algorithm was incorporated into the IBM

Stephen M Blackburn, Perry Cheng, and Kathryn S McKinley [3] analyzed that the
generational collectors as a function of heap size for each benchmark is mainly

collector time. Mark Sweep does better in small heaps and Semi Space is the best in large heaps.
 in small memory. Garbage collection algorithms still trade for

time which needs to be better balanced for achieving the high performance computing.
Attanasio, David F. Bacon, Anthony Cocchi, and Stephen Smith [4] observed that when resources are

e collectors behave in similar manner. But when memory is limited, the hybrid collector
 space and semi-space copying for the nursery) can deliver at least

available online at www.csjournalss.com

 Page | 225

rr

Garbage Collection (GC) is the process of automatic memory reclamation in which those objects

which are no longer referenced by program or any other live object are collected. The memory occupied by
ry. The programming thread that is responsible for

There are various metrics that affect the performance of the application.
In the current research paper we have experimentally tested

the four garbage collectors on various benchmarks of SPECjvm2008 and calculated how much time is

Automatic memory management is gaining importance in the high level languages. Many high level
garbage collectors for automatic memory management. There are

el, Parallel Old, and Concurrent Mark Sweep
are young generation, old

generation and permanent generation. Initially objects are allocated to young generation. While those
s that survive two or more minor collections are promoted to old generation. Some large objects may

heap memory area that
lasses, java methods and reference objects.

and two survivor
and one of the survivor space (from

is empty all the time. Those objects that are large in size and cannot

objects) in the young generation, the
defined as the time spent in collecting the garbage. During

During young generation
collection application is paused to collect minor collection. While during old generation collection

garbage collecting languages
availability. Given a wide

algorithms, no single system performs best across all programs and heap
for dynamic and automatic switching

GC for application specific garbage collection selection. Further they
sms for aggressive GC

Katherine Barabash, Yoav Ossia, and Erez
throughput of the

of the collector without foiling the other good qualities (such
solution on the IBM production JVM and

 by up to 13.4%,
(short). The proposed algorithm was incorporated into the IBM

analyzed that the
a function of heap size for each benchmark is mainly

Space is the best in large heaps.
ection algorithms still trade for space and

the high performance computing. Clement R.
Stephen Smith [4] observed that when resources are

limited, the hybrid collector
space copying for the nursery) can deliver at least 50%

 VVoolluummee--88,, NNuummbbeerr--22 JJaann--JJuunn

better application throughput. Therefore parallel collector
applications. Katherine Barabash, Yoav Ossia, and Erez Petrank [
concurrent collector, by improving the
collector without foiling the other good qualities (such
implemented their solution on the IBM production JVM and obtained a performance
26.7%, a reduction in the heap consumption
(short). The proposed algorithm was incorporated into the IBM
Perry Cheng, and Kathryn S McKinley [3
as a function of heap size for each benchmark is mainly dictated by
in small heaps and Semi Space is the best in large heaps. But the results are not satisfactory
memory. Garbage collection algorithms still trade fo
achieving the high performance computing.
[5], experimental design shows key algorithmic features and how they
explain the direct and indirect costs of garbage collection as a function of heap size on the SPEC
benchmarks. They find that the contiguous allocation of
benefits over freelist allocators. The reduced col
locality benefit of contiguous allocation motivates a copying nursery for newly allocated objects.
mentioned advantages dominate the overheads of
Jurgen Heymann [6] presented an analytical model that compares
The overhead functions are easy to measure and tune parameters and account for all relevant
and space overhead of the different algorithms.
management behavior of several Java programs from the
observation is that the default heap configuration used in IBM JDK 1.1.6 results
collection and the inefficient execution of

Experimentation
Benchmarks
We have used SPECjvm2008 benchmark suite
in SPECjvm2008 are studied in
experimentation. All the eleven benchmarks specified in the SPECjvm2008 are
of heap size varying from 20 mb to
executed 10 times in a fixed heap size and the arithmetic mean
Parallel, Parallelold and Concurrent mark sweep
Processor used in current research is Intel(R) Core(TM) Duo
2038 megabyte RAM. The frequency of the memory is 795MHz. The operating System
Windows XP Professional Version 2002 Service
Ergonomics machine class is client. JVM name is JavaHoTSpot(TM) Client
heap size is estimated at 247.50 MB.
Garbage Collection time for minor collection
It is defined as the time spent in collecting the garbage
running in the young generation to collect the garbage, the application is paused during that time. The
garbage collection time for minor collection should be as short as possible.

Conclusion/Future Work
It has been observed that if the size of the heap is increased
minor collection is decreased for all the garbage collectors except for derby and scimark.large benchmarks.
But in case derby and scimark.large benchmarks
increases with the increase in the size of heap.
collection is shown in figure 1. In future work we would find the time spent by all garbage collect
the benchmarks of SPECjvm2008, due to major collection

 22001155 pppp.. 222255--222288 IImmppaacctt FFaaccttoorr 22..88 available online at

DOI: 10.141079/IJITKM.2015.813

better application throughput. Therefore parallel collector seems best for online transaction processing
Katherine Barabash, Yoav Ossia, and Erez Petrank [2] presented a modification of the

concurrent collector, by improving the throughput of the application, stack, and the behavior of cache
tor without foiling the other good qualities (such as short pauses and high scalability). They

solution on the IBM production JVM and obtained a performance improvement of up to
26.7%, a reduction in the heap consumption by up to 13.4%, and no substantial change in the pause times
(short). The proposed algorithm was incorporated into the IBM production JVM. Stephen M Blackburn,

Cheng, and Kathryn S McKinley [3] analyzed that the overall performance of generational collectors
nction of heap size for each benchmark is mainly dictated by collector time. Mark Sweep does better

Space is the best in large heaps. But the results are not satisfactory
memory. Garbage collection algorithms still trade for space and time which needs to be better balanced for

the high performance computing. Stephen M Blackburn, Perry Cheng and Kathryn S McKinley
experimental design shows key algorithmic features and how they match program characteristics to

costs of garbage collection as a function of heap size on the SPEC
benchmarks. They find that the contiguous allocation of copying collectors attains significant locality

allocators. The reduced collection cost of the generational algorithms together with the
allocation motivates a copying nursery for newly allocated objects.

mentioned advantages dominate the overheads of generational collectors compared with non
] presented an analytical model that compares all known garbage collection algorithms.

are easy to measure and tune parameters and account for all relevant
different algorithms. Kim, T., Chang, N., and Shin, H. [7] observed the memory

management behavior of several Java programs from the SPECJVM98 benchmarks. The important
the default heap configuration used in IBM JDK 1.1.6 results in fre

collection and the inefficient execution of applications.

We have used SPECjvm2008 benchmark suite in the current research. All the eleven benchmarks available
in SPECjvm2008 are studied in real JVM and executed and no simulators are being used in the

All the eleven benchmarks specified in the SPECjvm2008 are executed over a wide range
of heap size varying from 20 mb to 400 mb with an increment of 20 mb size. Each of the benchmark

imes in a fixed heap size and the arithmetic mean is obtained. The performance of the Serial
, Parallelold and Concurrent mark sweep collector is measured over different heap sizes.

Processor used in current research is Intel(R) Core(TM) Duo CPU T2250 @ 1.73GHz. 32 bit system with
The frequency of the memory is 795MHz. The operating System

Windows XP Professional Version 2002 Service Pack 2. Java used for performing the tests is jdk1.7.0_04,
class is client. JVM name is JavaHoTSpot(TM) Client VM in which the maximum

MB.
Garbage Collection time for minor collection
It is defined as the time spent in collecting the garbage due to minor collection. When garbage collector is
running in the young generation to collect the garbage, the application is paused during that time. The
garbage collection time for minor collection should be as short as possible.

observed that if the size of the heap is increased, the time spent in collecting the garbage due to
minor collection is decreased for all the garbage collectors except for derby and scimark.large benchmarks.

derby and scimark.large benchmarks the garbage collection time due to minor collection
increases with the increase in the size of heap. The result for time spent garbage collection for minor

In future work we would find the time spent by all garbage collect
the benchmarks of SPECjvm2008, due to major collection

available online at www.csjournalss.com

 Page | 226

s best for online transaction processing
a modification of the

throughput of the application, stack, and the behavior of cache of the
as short pauses and high scalability). They

improvement of up to
and no substantial change in the pause times

Stephen M Blackburn,
analyzed that the overall performance of generational collectors

collector time. Mark Sweep does better
Space is the best in large heaps. But the results are not satisfactory in small

space and time which needs to be better balanced for
Stephen M Blackburn, Perry Cheng and Kathryn S McKinley

match program characteristics to
costs of garbage collection as a function of heap size on the SPEC JVM

copying collectors attains significant locality
algorithms together with the

allocation motivates a copying nursery for newly allocated objects. The above
non-generational.

all known garbage collection algorithms.
are easy to measure and tune parameters and account for all relevant sources of time

] observed the memory
SPECJVM98 benchmarks. The important

in frequent garbage

the eleven benchmarks available
o simulators are being used in the

executed over a wide range
400 mb with an increment of 20 mb size. Each of the benchmark is

is obtained. The performance of the Serial,
is measured over different heap sizes. The

PU T2250 @ 1.73GHz. 32 bit system with
The frequency of the memory is 795MHz. The operating System used Microsoft

Java used for performing the tests is jdk1.7.0_04,
VM in which the maximum

When garbage collector is
running in the young generation to collect the garbage, the application is paused during that time. The

time spent in collecting the garbage due to
minor collection is decreased for all the garbage collectors except for derby and scimark.large benchmarks.

the garbage collection time due to minor collection
time spent garbage collection for minor

In future work we would find the time spent by all garbage collectors on all

 VVoolluummee--88,, NNuummbbeerr--22 JJaann--JJuunn

References
[1]. S. Soman, C. Krintz,“Application
New York, NY, USA, Vol. 80, No. 7, pp. 1037
 [2]. K. Barabash, Y. Ossia, E. Petrank,“Mostly Concurrent
18th Annual ACM SIGPLAN Conf. on Object
New York, NY, USA , 2003.
[3]. O. Agesen, D. L. Detlefs,“Finding References in Java Stacks”,
Collection and Memory Manag., Atlanta, GA, October 1997.
[4]. C. R. Attanasio, D. F. Bacon, A. Cocchi, S. Smith, “A Comparative Evaluation of Parallel Garbage Collector and
Implementations”, LCPC’01 Proc. of the 14th Int. Conf. on Languages an
Springer- Verlag Berlin, Heidelberg, LNCS 2624, pp. 177

Figure 1. Time spent by garbage collector

 22001155 pppp.. 222255--222288 IImmppaacctt FFaaccttoorr 22..88 available online at

DOI: 10.141079/IJITKM.2015.813

S. Soman, C. Krintz,“Application-specific Garbage Collection”, J. of Sys. and Software, Elsevier Science Inc.
New York, NY, USA, Vol. 80, No. 7, pp. 1037-1056, July 2007.

K. Barabash, Y. Ossia, E. Petrank,“Mostly Concurrent Garbage Collection Revisited”, OOPSLA ‘03 Proc. of the
18th Annual ACM SIGPLAN Conf. on Object-Oriented Prog., Systems, Languages, and App., pp. 255

O. Agesen, D. L. Detlefs,“Finding References in Java Stacks”, Submitted to OOPSLA’97 Worksho
and Memory Manag., Atlanta, GA, October 1997.

C. R. Attanasio, D. F. Bacon, A. Cocchi, S. Smith, “A Comparative Evaluation of Parallel Garbage Collector and
Implementations”, LCPC’01 Proc. of the 14th Int. Conf. on Languages and Compilers for Parallel Computing,

Verlag Berlin, Heidelberg, LNCS 2624, pp. 177–192, 2003.

Figure 1. Time spent by garbage collectors for all the benchmarks of SPECjvm2008 due to minor collection

available online at www.csjournalss.com

 Page | 227

Collection”, J. of Sys. and Software, Elsevier Science Inc.

ted”, OOPSLA ‘03 Proc. of the
Prog., Systems, Languages, and App., pp. 255-268, ACM

Submitted to OOPSLA’97 Workshop on Garbage

C. R. Attanasio, D. F. Bacon, A. Cocchi, S. Smith, “A Comparative Evaluation of Parallel Garbage Collector and
d Compilers for Parallel Computing,

minor collection .

 VVoolluummee--88,, NNuummbbeerr--22 JJaann--JJuunn

[5]. S. M. Blackburn, P. Cheng, K. S. McKinley,“Myths and
Collection”, Proc. of the Joint Int. Conf. on Meas
New York, NY, USA, 2004.
[6]. J. Heymann,“A Comprehensive Analytical Model for Garbage
Vol. 26, No. 8, August 1991.
[7]. Kim, T., Chang, N., Shin, H.,“Bounding Worst Case Garbage
RTAS ’00 Proc. of the Sixth IEEE Real Time Tech. and Appl. Symp.pp.
USA, 2000.

 22001155 pppp.. 222255--222288 IImmppaacctt FFaaccttoorr 22..88 available online at

DOI: 10.141079/IJITKM.2015.813

S. M. Blackburn, P. Cheng, K. S. McKinley,“Myths and Realities: The Performance Impact of Garbage
Proc. of the Joint Int. Conf. on Measurement and Modeling of Compu. Sys., June 12

J. Heymann,“A Comprehensive Analytical Model for Garbage Collection Algorithms”, ACM SIGPLAN Notices,

Kim, T., Chang, N., Shin, H.,“Bounding Worst Case Garbage Collection Time for Embedded Realtime Systems”,
Proc. of the Sixth IEEE Real Time Tech. and Appl. Symp.pp. 46, IEEE Compu. Society Washington, DC,

available online at www.csjournalss.com

 Page | 228

Realities: The Performance Impact of Garbage
of Compu. Sys., June 12–16, ACM Press,

Collection Algorithms”, ACM SIGPLAN Notices,

Collection Time for Embedded Realtime Systems”,
46, IEEE Compu. Society Washington, DC,

